
26th International Conference on Automation and Computing

Paper ID: 136

Terrain Adaptive Gait Transitioning for a Quadruped 
Robot using Model Predictive Control

Prathamesh Saraf, Dr. Abhishek Sarkar and Dr. Arshad Javed

Session 3(B): Control Engineering

Presenter: Prathamesh Saraf, BITS Pilani Hyderabad Campus, India
                                    



Introduction

● The advantage of legged robots: 

○ High agility and high-speed locomotion

○ High stability for all kinds of terrains 

○ Less surface coverage 

● Applications like rescue, inspection, and exploration. 

● This work mainly focuses on the stability of quadruped 

robots on challenging terrains with incline slopes



● Literature shows that increase in flexibility leads to more vibrations and instability

● Tomislav Horvat et al. described the MPC for the quadruped robot locomotion. MPC is used 

to control and adjust the positions of the footsteps in order to satisfy stability constraints.

● Mahdi Khorram et al. presented the path planning of a robot on uneven terrain using LQR 

control for achieving stability along with ZMP stabilisation

● Jiaxin Guo et al. proposed an MPC design for foot placement and planning of the Quadruped 

Robot

Literature Survey



Model Predictive Control (MPC)

● Uses the system dynamics, for predicting future steps based on the model’s current state.

● A Cost function or a Quadratic Program(QP) which needs to be optimised. 

● Considers the system constraints

● Better candidate for complex systems like legged robots

● Single QP required instead of multiple SISO controllers



Methodology
● Workflow:

○ Lagrange-Euler dynamics formulation governing the robot’s motion

○ Design the bounding and trotting gait patterns

○ Design the force based Model Predictive Control

○ Simulate the controller in Webots environment

● State-of-the-art: Existing literature focuses on position based control which is not suitable for 

uneven terrains and environments with large disturbances. In our paper we present a torque 

based feedback control and prove that it solves these issues.



Gait definition

Bounding gait = [LF,RF], [LH,RH], [LF,RF], [LH,RH], … (High paced locomotion) 

Trotting gait =  [RH, LF], [RF, LH], [RH, LF], [RF, LH], ... (Medium paced locomotion)



The System Architecture



Pose Correction for Increasing Perturbations

The Robot is subjected to external impulse 
forces of magnitudes:
1. 50N
2. 100N
3. 150N



MPC design: Uneven terrain vs Smooth terrain



Simulations

Gait transition Fall handling & force resistance

https://docs.google.com/file/d/1sgNdJsdSi9mVz18W3yoFIPjBLHU95We1/preview
https://docs.google.com/file/d/1LIRsQt2EJLqz9p2Eg1jWDtZG8a2Ni22R/preview


Conclusion

● All the simulations are carried out in MATLAB and Webots

● A smooth velocity based gait transition is achieved. 

● Simulations show that the robot with MPC can:

○ Handle perturbations up to 150 N

○ Sustain falls from heights up to 80 cm. 

● The robot is also able to traverse on inclined uneven surfaces upto 20° slope



Future Scope

● Design the other quadrupedal gaits and transitions between them.

● Design policies for the robot to achieve stable locomotion on greater inclined surfaces. 

● Environment mapping will be explored for dynamic trajectory optimisation on the run. 

● Design non-periodic gaits to allow locomotion through rocky and sandy terrain using 

Reinforcement Learning techniques. 
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